
International Journal on Emerging Research Areas (IJERA) ISSN:2230-9993

Dr Anil A R
AI & ML Department

Sree Buddha College of Engineering,
Alappuzha, India

cs.anilar@sbcemail.in

Amit Sankar Arun
CSE Department

Sree Buddha College of Engineering,
Alappuzha, India

2020cs.amit@sbcemail.in

Anandhu Anilkumar
CSE Department

Sree Buddha College of Engineering,
Alappuzha,India

2020cs.anandhu@sbcemail.in

Anandu S Sivan
CSE Department

Sree Buddha College of Engineering,
Alappuzha, India

2020cs.anandu@sbcemail.in

Anoop Manoharan
CSE Department

Sree Buddha College of Engineering,
Alappuzha, India

2020cs.anoop@sbcemail.in

Abstract— Nowadays coding is not a complex thing to do, by
the advancement in technology and AI gives a crucial role in the
easiness to the day to day life of human beings. Traditional type
of coding is complex and not everyone is flexible with that, by
using the voice coding we can make coding easier. Here we are
integrating the gpt model to find the required code they asked
for, this is done with the help of Natural Language Processing
and Speech Recognition. We are integrating python libraries
with the open AI model gpt 3.5 to get the answers in response to
the speech input that is given by the user. Python libraries are
used for these functions : converting audio to text format and
searching the text in the gpt model and response that is given by
the model.

Keywords— deep learning, natural language processing, source
code generation, voice to source code, voice-based ID

I. INTRODUCTION
In an era marked by the convergence of artificial intelligence
and human-computer interaction, the VoiceCode IDE project
stands as a pioneering venture at the intersection of natural
language processing (NLP) and programming. Recognizing
the profound nature of human communication through voice,
this project sets out to develop a revolutionary
voice-basedIntegrated Development Environment (IDE) that

enables users to design and develop applications through
spoken commands. Human beings possess an innate ability to
comprehend and express thoughts seamlessly through text and
speech, utilizing the nuances of contextual interpretation,
understanding, and manipulation.

II. Literature Review

The literature review section of the VoiceCode IDE
project delves into the rich tapestry of existing research,
exploring key themes at the intersection of voice-based
programming, natural language processing (NLP), and
artificial intelligence (AI). Beginning with an
examination of foundational works in NLP, the review
scrutinizes how language models, especially transformer
models, have evolved to comprehend and generate
human-like language.Insights from studies on transfer
learning methodologies within the AI domain provide a
theoretical foundation for VoiceCode IDE's innovative
approach in adapting a pre-trained transformer model for
voice-to-code translation. Furthermore, the section
investigates prior works on developing custom IDEs and
explores how these interfaces have evolved to
accommodate diverse user interactions.

IJERA Volume 04, Issue 01 241

DESIGNING OF A VOICE – BASED PROGRAMMING IDE FOR SOURCE CODE GENERATION

10.5281/zenodo.12526366

mailto:cs.anilar@sbcemail.in
mailto:2020cs.amit@sbcemail.in
mailto:2020cs.anandhu@sbcemail.in
mailto:2020cs.anandu@sbcemail.in
mailto:2020cs.anoop@sbcemail.in


International Journal on Emerging Research Areas (IJERA) ISSN:2230-9993

Comparative analyses of voice-enabled IDEs and their
successes and limitations provide valuable insights into the
design considerations and potential pitfalls that the VoiceCode
IDE project may encounter. The literature review culminates
with a synthesis of existing knowledge, identifying gaps in
current research and laying the groundwork for the unique
contributions of the Voice Code IDE project. By synthesizing
insights from studies in NLP, voice recognition technologies,
and custom IDE development, this section provides a
comprehensive understanding of the project's context,
positioning

III. Methodology
The proposed system represents a pioneering endeavor at the
intersection of Natural Language Processing (NLP), Automatic
Speech Recognition (ASR), and code generation. At its core, the
system aims to seamlessly translate spoken language into
syntactically correct Python source code through the integration
of advanced technologies and methodologies. Leveraging the
power of Deep Learning (DL), the system harnesses a pre-
trained Transformer model with a transfer learning approach,
utilizing the English to Python dataset for training. This strategic
combination not only enables the model to comprehend and
process spoken commands but also facilitates the generation of
code that adheres to Python's syntactical norms

The incorporation of the Word2Vec model enhances the voice-
to-text conversion process, enriching the input for the
Transformer model. To showcase the system's functionality, a
custom Python Integrated Development Environment (IDE),
known as PyVoice IDE, has been meticulously crafted. PyVoice
IDE acts as the interface between users and the underlying
technology, providing a user-friendly platform for generating
source code through voice input. The top-level architecture
seamlessly orchestrates the system's components, initiated by
voice commands through PyVoice IDE

The system effectively listens to and processes voice
commands, converting them into text using the pre-trained

(sponsors).
model. This text serves as input for the text-to-source code
generation model within the Transformer architecture,
producing syntactically accurate Python code.

The proposed system not only marks a significant advancement
in voice-based code generation but also holds the promise of
democratizing programming by offering an intuitive interface for
users to articulate their coding needs verbally. By amalgamating
cutting-edge DL techniques with user-friendly tools like PyVoice
IDE, the system positions itself at the forefront of
human-computer interaction, paving the way for future research
to broaden its language capabilities and transcend the limitations
of English-only datasets. This system exemplifies a
transformative approach to coding, where the spoken word
becomes a powerful catalyst for generating

syntactically accurate code, ushering in a new era of
accessibility and efficiency in software development.

IV. Proposed System

In the endeavor to train an effective voice-to-text model and
a code generation model, the selection of appropriate datasets
plays a pivotal role in shaping the system's capabilities. The
Voice to Text DataSet constitutes a critical component, and
the chosen Common Voice dataset proves to be an invaluable
resource. Specifically focusing on the English language, this
dataset offers a vast repository of audio files, each
meticulously paired with corresponding text files and In
essence, the thoughtful selection of these datasets
underscores a commitment to inclusivity and diversity in
training the voice-to-text and code generation models.

The datasets serve as the bedrock upon which the models
cultivate their understanding of language nuances and coding
intricacies. As the system endeavors to revolutionize the
interaction between human voice and machine-generated
code, the judicious choice of these datasets ensures that the
models are well-equipped to handle the complexities
inherent in both spoken language and programming syntax.
Moreover, the extensive nature of the datasets provides a
robust foundation for training, allowing the models to
generalize effectively and deliver accurate and contextually
relevant outcomes across a diverse range of scenarios in both
voice- to-text conversion and code generation.

Model selection
The heart of our project beats with the robust and
sophisticated Transformer architecture, chosen as the
primary model for our sequence-to-sequence learning
endeavors. This architectural marvel, renowned for its
triumphs in Natural Language Processing (NLP)
applications, aligns seamlessly with the core objectives of
our project—transforming voice commands into
syntactically correct Python source code. This choice is akin
to selecting a masterful conductor to orchestrate the intricate
symphony between spoken language and coding syntax. The
Transformer architecture stands out in the AI realm,
particularly for its prowess in understanding the complexities
of human language

IJERA Volume 04, Issue 01 242



International Journal on Emerging Research Areas (IJERA) ISSN:2230-9993

Our project necessitates not merely the translation of words but
a deep comprehension of context, intent, and sequence. The
Transformer excels precisely in this arena, akin to a language
virtuoso capable of deciphering the subtleties of spoken
instructions and transmuting them into coherent lines of Python
code. At its essence, the Transformer acts as a linguistic
magician, leveraging attention mechanisms to discern and
prioritize specific elements within the spoken input while
crafting the output Python code. This attention to detail is
paramount, especially in the nuanced realm of coding syntax and
logic.

By embracing the Transformer's capabilities, our project ensures
a profound understanding of the relationships within spoken
phrases, ultimately generating Python code that adheres not just
to language rules but also to the logicalconstructs essential in
coding paradigms. In documenting our project, it becomes
imperative to underscore the transformative role that the
Transformer architecture plays. It serves as the linchpin, the
intellectual powerhouse that elevates our system's proficiency in
translating voice commands into accurate, meaningful, and
syntactically precise Python source code. This choice, rooted in
the Transformer's proven success in NLP applications,
exemplifies a strategic and informed decision, propelling our
project toward the forefront of voice-based coding innovations.

C. Training the Transfer Model
To harness the capabilities of the Transformer model for our
project, we've strategically employed Google Colab, a cloud-
based Jupyter notebook environment, as our training ground.
The rationale behind this choice is twofold: accessibility and
computational power. Given our constraints with limited access
to high-performance Graphics Processing Units (GPUs), Google
Colab emerges as a fitting solution, offering a cloud- based
platform equipped with GPU support. This proves to be a game
changer for our project, as training deep learning models,
especially as intricate as the Transformer, demands substantial
computational resources. Google Colab provides us with the
necessary firepower to execute computationally intensive tasks
without the burden of high- end hardware requirements. This
technique involves leveraging knowledge gained from a pre-
trained model to boost the performance of our specific task, in
this case, generating syntactically correct Python source code.
The pre- trained Transformer model, initially acquainted with a
wealth of linguistic nuances and patterns, serves as the
foundation. We fine-tune this pre-existing knowledge by
exposing the model to our English to Python dataset, a tailor-
made compilation crafted to acquaint the model with the
intricacies of converting spoken language into Python code.
The beauty of transfer learning lies in its efficiency. By building
upon an already adept model, we circumvent the need for
exhaustive training from scratch, significantly reducing the
computational burden and time required. This process allows our
model to adapt and specialize, honing its ability to generate

Python code that not only follows syntactic norms but is also
contextually relevant. It's akin to giving our Transformer
model a head start in understanding the nuances of
converting English instructions into Python code, a strategic
advantage that aligns perfectly with our project's objectives
of accuracy and efficiency. In essence, Google Colab and
transfer learning emerge as the dynamic duo, equipping our
project with the tools and methodologies essential for
training a proficient and context-aware Transformer model.

Development of PyVoice IDE
PyVoice IDE serves as the bridge between users and

the underlying technology, offering an intuitive platform
where spoken instructions seamlessly transform into
syntactically correct Python source code.The design and
development of PyVoice IDE prioritize user experience,
aiming for a fluid and natural interaction between human
voice and machine- generated code. Its user-friendly
interface provides a canvas where users can articulate
their coding needs verbally, free from the constraints of
traditional keyboard input. The integration of voice-based
commands into the coding work flow marks a paradigm
shift, unlocking a more dynamic and expressive mode of
communication with the code generation system. The true
magic happens when the trained Transformer model, our
linguistic virtuoso, takes center stage within PyVoice IDE.
By seamlessly integrating this model into the IDE, we
enable PyVoice to comprehend and interpret spoken
words with remarkable accuracy. The transformation from
voice commands to text is orchestrated flawlessly by the
trained Transformer model embedded within PyVoice
IDE. This converted text becomes the input, the linguistic
blueprint, for the subsequent generation of Python source
code. The synergy between PyVoice IDE and the
Transformer model is where the real alchemy occurs.
Users articulate their coding intentions through voice,
PyVoice IDE translates these spoken words into text with
the aid of the Transformer model, and finally, this text
serves as the creative canvas for generating syntactically
precise Python code. The integration ensures that the
generated code not only adheres to language rules but also
encapsulates the contextual nuances inherent in the
spoken instructions. In essence, PyVoice IDE is more than
just a coding environment; it's a facilitator of a new,
voice-centric coding experience. It brings together
cutting-edge technology and user-centric design to
redefine the boundaries of how we interact with code,
making coding more accessible, dynamic, and attuned to
the natural cadence of human speech.

Validation and Testing

The validation and testing phase of our project is a critical
juncture where the efficacy and reliability of our voice-based
code generation system undergo meticulous scrutiny. Our
primary objective during this phase is to ensure that the
system not only comprehends a diverse range of voice
commands

IJERA Volume 04, Issue 01 243



International Journal on Emerging Research Areas (IJERA) ISSN:2230-9993

accurately but also consistently generates syntactically correct
Python source code in response to these inputs. The validation
process commences with a comprehensive examination of the
trained Transformer model. We subject the model to a battery
of test cases, encompassing a spectrum of spoken instructions
that simulate real-world usage scenarios. This enables us to
assess the model's ability to generalize its learning and
accurately interpret a variety of spoken commands. Validation
also involves checking the model's response to variations in
accents, pacing, and linguistic styles, ensuring that it remains
robust and adaptable to the diverse ways users may articulate
their coding intentions. Following the model validation, we
transition to the PyVoice IDE, our user interface, where the
real-world interaction between users and the system unfolds.
Users are invited to articulate voice commands representing
common coding tasks, ranging from variable assignments to
control flow structures. This live testing within the PyVoice
IDE allows us to evaluate the system's responsiveness,
accuracy, and user- friendliness.

It also serves as an opportunity to gather valuable feedback
from users, facilitating iterative improvements to enhance the
overall user experience. Furthermore, we conduct extensive
testing on the system's code generation capabilities, ensuring
that the generated Python code not only adheres to syntactic
norms but is also contextually relevant and functionally
accurate. This phase involves the creation of a diverse set of
test cases, covering various programming constructs and
language intricacies, to validate the system's proficiency in
transforming spoken language into precise and meaningful
code.

References

[1] J. Rownicka, S. Renals and P. Bell, "Simplifying very deep
convolutional neural network architectures for robust speech
recognition," in IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU),Okinawa, 2017

[2] Henderig,Sellik NLP techniques for code generation driving pattern
recognition, IEEE International Conference on Big Data 2017

[3] P. J. Rani, J. Bakthakumar, B. P. Kumaar, U. P. Kumaar and S.Kumar,
"Voice controlled home automation system using Natural Language
Processing (NLP) and Internet of Things (IoT)," in Third International
Conference onScience Technology Engineering &Management
(ICONSTEM), 2017.

[4] Vashishta, J. P. Singh, P. Jain and J. Kumar, "Raspberry PI based
voiceoperated personal assistant," in International Conference on
Electronics And Communication and Aerospace Technology, 2019.

[5] Deep Learning for Source Code Modeling and Generation: Models- H.
Chen., T. Le and M. Babar.

[6] X. Li, K. Li, D. Qiao, Y. Ding and D. Wei, "Application Research of
Machine Learning Method Based on Distributed Cluster in Information

Retrieval," in International Conference on Communications, Information
System and Computer Engineering,Haikou, China, 2019.

IJERA Volume 04, Issue 01 244




